Tetracapsuloides bryosalmonae and Proliferative Kidney Disease in Montana

Adam Sepulveda & Patrick Hutchins
US Geological Survey
Northern Rocky Mountain Science Center

Renee Martin (USFWS), Lacey Hopper (USFWS), Ken Staigmiller (MT FWP)

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.
Overview

1. Thank you for keeping eyes on our cages!
2. The past two years...
 • No PKD disease
 • Cooler temps, more water
 • Data → minimal threat of infection
 • Expanding research to other rivers
T. bryosalmonae (“PKX”)

Overt Infection

Covert Infection

Fish Myxospore

Clinical

Asymptomatic

Bryozoan Myxospore

Preliminary Information-Subject to Revision.
Not for Citation or Distribution
Brief History of PKD

- 1920: PKD-like symptoms described in Europe
- 1960: PKD cases in N. America
- 1974: PKD described
- 1981: T. bryosalmonae identified as "PKX"
- 1990: PKD-related mortality in Montana
- 1999: First PKD reported in U.S. (Idaho)
- 2012*: Preliminary Information - Subject to Revision. Not for Citation or Distribution
- 2016*: Subtle Yellowstone River fish kill
- 2017: Subtle Yellowstone River fish kill

* PKD Mortalities in the SF Snake River, ID
What happened in the Yellowstone?

• Hypotheses
 • Unprecedented environmental conditions
 • Nutrient loading
 • New introduction
 • New strain?
 • Changes in bryozoan populations?

• Key information
 • Where is *T. bryosalmonae* now?
 • Are there important seasonal, annual, or spatial patterns?
 • When and where do bryozoans occur?
What have we been doing?

- Where is T. bryo now?
 - Screen over 1200 fish kidneys from MT, ID, & WY
 - Water sampling at 6 different rivers
- Are there important seasonal, annual, or spatial patterns in T. bryo detection?
 - Intensive water sampling in Yellowstone R.
 - Fish cage exposures for 2 summers
 - Controlled study with collaborators in aquaculture
- When and where do bryozoans occur?
 - Visual surveys
 - Bryozoan traps
Cage Results

- 2018
 - 4 sites in the Yellowstone River from July-Sep
 - No infections detected

- 2019
 - 4 sites in the Yellowstone and 3 in the Madison from July-Sep
 - No infections detected
What does an eDNA positive mean?

Collect Water → Filter Water → Extract all DNA from Filter → Amplify Target DNA → Visualize Results

Parasite DNA
eDNA Surveillance

Shore-Based
Correlate environment with detection
Link parasite in water with parasite in fish

Thalweg
Integration of river section as a whole
Compare Rivers
- Seasonal pattern
- No spatial pattern
- Spatial pattern
- Seasonal pattern
- Annual pattern
- Spatial and Seasonal breakdown

Preliminary Information-Subject to Revision.
Not for Citation or Distribution
Current Hypotheses

- Multi-year flow drives bryozoan densities
- Bryozoan densities drive fish infection
- Temperature drives development of disease symptoms in fish
- Bryozoans are likely the lynchpin of understanding PKD
 - Also extremely challenging to collect data

- 2015 conditions increased bryozoan densities
- 2016 presented a “perfect storm” primed by 2015
 - High temps in early summer
 - Low peak flow
 - Low base flow
Yellowstone research has lead to...

- Two international PKD-focused meetings
- Joint European-USA research proposal
- New collaborations
 - Community
 - Inter-Agency
 - National
 - International
 - Private Industry
Ongoing Efforts

- Yellowstone River
 - Sentinel fish cage exposures
 - eDNA surveillance
 - Bryozoan distribution and diversity
 - Bryozoan host species
- Other Rivers
 - eDNA surveillance
 - Diagnostics and surveillance at aquaculture facility
 - Genomics approaches for T. bryo strain differences
 - Model presence and infection as a function of environment
Acknowledgements

- MT FWP
- US FWS Bozeman Fish Health Center
- Upper Yellowstone Watershed - RiverNET
- Meghan Forstchen & Anna Swigris (USGS NOROCK)
- Maureen Purcell (USGS WFRC)
- Jamie Brusa & Nick Voss (MSU)
- Tim Wood (Bryo Technologies)

asepulveda@usgs.gov
Preliminary Information - Subject to Revision. Not for Citation or Distribution
Water Quality at Corwin Springs

<table>
<thead>
<tr>
<th>Ammonia</th>
<th>Nitrogen</th>
<th>Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 mg/L</td>
<td>0.66 mg/L</td>
<td>0.06 mg/L</td>
</tr>
</tbody>
</table>

National EPA *Lower Yellowstone*

Preliminary Information-Subject to Revision. Not for Citation or Distribution